Transplanted progenitors generate functional enteric neurons in the postnatal colon.
نویسندگان
چکیده
Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
منابع مشابه
Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon.
Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is im...
متن کاملTransplantation of neonatal gut neural crest progenitors reconstructs ganglionic function in benzalkonium chloride-treated homogenic rat colon.
BACKGROUND To value the possibility and the future feasibility of the use of autograft cells transplantation in disorders of the enteric neural system, we postulate that isolated neonatal nongenetically modified neural crest progenitors could survive and differentiate into neurons and glia in homogenic denervated rats and, therefore, restore partial intestinal function after transplantation. ...
متن کاملExposure to GDNF Enhances the Ability of Enteric Neural Progenitors to Generate an Enteric Nervous System
Cell therapy is a promising approach to generate an enteric nervous system (ENS) and treat enteric neuropathies. However, for translation to the clinic, it is highly likely that enteric neural progenitors will require manipulation prior to transplantation to enhance their ability to migrate and generate an ENS. In this study, we examine the effects of exposure to several factors on the ability ...
متن کاملIn vivo transplantation of fetal human gut‐derived enteric neural crest cells
The prospect of using neural cell replacement for the treatment of severe enteric neuropathies has seen significant progress in the last decade. The ability to harvest and transplant enteric neural crest cells (ENCCs) that functionally integrate within recipient intestine has recently been confirmed by in vivo murine studies. Although similar cells can be harvested from human fetal and postnata...
متن کاملNeuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures.
Cultures of dissociated foetal and postnatal mouse gut gave rise to neurosphere-like bodies, which contained large numbers of mature neurons and glial cells. In addition to differentiated cells, neurosphere-like bodies included proliferating progenitors which, when cultured at clonal densities, gave rise to colonies containing many of the neuronal subtypes and glial cells present in the mammali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 123 3 شماره
صفحات -
تاریخ انتشار 2013